Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Metab ; 81: 101903, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38369012

RESUMO

Acetyl and other acyl groups from different short-chain fatty acids (SCFA) competitively modify histones at various lysine sites. To fully understand the functional significance of such histone acylation, a key epigenetic mechanism, it is crucial to characterize the cellular sources of the corresponding acyl-CoA molecules required for the lysine modification. Like acetate, SCFAs such as propionate, butyrate and crotonate are thought to be the substrates used to generate the corresponding acyl-CoAs by enzymes known as acyl-CoA synthetases. The acetyl-CoA synthetase, ACSS2, which produces acetyl-CoA from acetate in the nucleocytoplasmic compartment, has been proposed to also mediate the synthesis of acyl-CoAs such as butyryl- and crotonyl-CoA from the corresponding SCFAs. This idea is now widely accepted and is sparking new research projects. However, based on our direct in vitro experiments with purified or recombinant enzymes and structural considerations, we demonstrate that ACSS2 is unable to mediate the generation of non-acetyl acyl-CoAs like butyryl- and crotonyl-CoA. It is therefore essential to re-examine published data and corresponding discussions in the light of this new finding.


Assuntos
Acil Coenzima A , Lisina , Acetilcoenzima A , Acil Coenzima A/metabolismo , Acetatos , Histonas
2.
Cell Rep ; 32(7): 108042, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32814045

RESUMO

VSV fusion machinery, like that of many other enveloped viruses, is triggered at low pH in endosomes after virion endocytosis. It was suggested that some histidines could play the role of pH-sensitive switches. By mutating histidine residues H22, H60, H132, H162, H389, H397, H407, and H409, we demonstrate that residues H389 and D280, facing each other in the six-helix bundle of the post-fusion state, and more prominently H407, located at the interface between the C-terminal part of the ectodomain and the fusion domain, are crucial for fusion. Passages of recombinant viruses bearing mutant G resulted in the selection of compensatory mutations. Thus, the H407A mutation in G resulted in two independent compensatory mutants, L396I and S422I. Together with a crystal structure of G, presented here, which extends our knowledge of G pre-fusion structure, this indicates that the conformational transition is initiated by refolding of the C-terminal part of the G ectodomain.


Assuntos
Vírus da Estomatite Vesicular Indiana/genética , Proteínas do Envelope Viral/genética , Proteínas Virais de Fusão/genética , Estrutura Molecular , Transfecção
3.
PLoS Pathog ; 16(3): e1008383, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32150590

RESUMO

Mokola virus (MOKV) belongs to the lyssavirus genus. As other genus members-including rabies virus (RABV)-it causes deadly encephalitis in mammals. MOKV entry into host cells is mediated by its transmembrane glycoprotein G. First, G binds cellular receptors, triggering virion endocytosis. Then, in the acidic endosomal environment, G undergoes a conformational change from its pre- toward its post-fusion state that catalyzes the merger of the viral and endosomal membranes. Here, we have determined the crystal structure of a soluble MOKV G ectodomain in which the hydrophobic fusion loops have been replaced by more hydrophilic sequences. The crystal structure corresponds to a monomer that is similar to the protomer of the trimeric post-fusion state of vesicular stomatitis virus (VSV) G. However, by electron microscopy, we show that, at low pH, at the surface of pseudotyped VSV, MOKV spikes adopt the trimeric post-fusion conformation and have a tendency to reorganize into regular arrays. Sequence alignment between MOKV G and RABV G allows a precise location of RABV G antigenic sites. Repositioning MOKV G domains on VSV G pre-fusion structure reveals that antigenic sites are located in the most exposed part of the molecule in its pre-fusion conformation and are therefore very accessible to antibodies. Furthermore, the structure allows the identification of pH-sensitive molecular switches. Specifically, the long helix, which constitutes the core of the post-fusion trimer for class III fusion glycoproteins, contains many acidic residues located at the trimeric interface. Several of them, aligned along the helix, point toward the trimer axis. They have to be protonated for the post-fusion trimer to be stable. At high pH, when they are negatively charged, they destabilize the interface, which explains the conformational change reversibility. Finally, the present structure will be of great help to perform rational mutagenesis on lyssavirus glycoproteins.


Assuntos
Lyssavirus/química , Multimerização Proteica , Proteínas Virais de Fusão/química , Cristalografia por Raios X , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína
4.
Adv Virus Res ; 104: 147-183, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31439148

RESUMO

Rhabdoviruses are enveloped viruses with a negative-sense single strand RNA genome and are widespread among a great variety of organisms. In their membrane, they have a single glycoprotein (G) that mediates both virus attachment to cellular receptors and fusion between viral and endosomal membranes allowing viral genome release in the cytoplasm. We present structural and cellular aspects of Rhabdovirus entry into their host cell with a focus on vesicular stomatitis virus (VSV) and rabies virus (RABV) for which the early events of the viral cycle have been extensively studied. Recent data have shown that the only VSV receptors are the members of the LDL-R family. This is in contrast with RABV for which multiple receptors belonging to unrelated families have been identified. Despite having different receptors, after attachment, rhabdovirus internalization occurs through clathrin-mediated endocytosis (CME) in an actin-dependent manner. There are still debates about the exact endocytic pathway of VSV in the cell and on RABV transport in the neuronal axon. In any case, fusion is triggered in the endosomal vesicle via a low-pH induced structural rearrangement of G from its pre- to its postfusion conformation. Vesiculovirus G is one of the best characterized fusion glycoproteins as the previously reported crystal structures of the pre- and postfusion states have been recently completed by those of intermediates during the structural transition. Understanding the entry pathway of rhabdoviruses may have strong impact in biotechnologies as, for example, VSV G is used for pseudotyping lentiviruses to promote efficient transduction, and VSV is a promising oncolytic virus.


Assuntos
Interações Hospedeiro-Patógeno , Vírus da Raiva/fisiologia , Vesiculovirus/fisiologia , Ligação Viral , Internalização do Vírus , Endocitose , Glicoproteínas/metabolismo , Receptores Virais/metabolismo , Proteínas do Envelope Viral/metabolismo
6.
Nat Commun ; 9(1): 1029, 2018 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-29531262

RESUMO

Vesicular stomatitis virus (VSV) is an oncolytic rhabdovirus and its glycoprotein G is widely used to pseudotype other viruses for gene therapy. Low-density lipoprotein receptor (LDL-R) serves as a major entry receptor for VSV. Here we report two crystal structures of VSV G in complex with two distinct cysteine-rich domains (CR2 and CR3) of LDL-R, showing that their binding sites on G are identical. We identify two basic residues on G, which are essential for its interaction with CR2 and CR3. Mutating these residues abolishes VSV infectivity even though VSV can use alternative receptors, indicating that all VSV receptors are members of the LDL-R family. Collectively, our data suggest that VSV G has specifically evolved to interact with receptor CR domains. These structural insights into the interaction between VSV G and host cell receptors provide a basis for the design of recombinant viruses with an altered tropism.


Assuntos
Glicoproteínas de Membrana/metabolismo , Receptores de LDL/química , Receptores de LDL/metabolismo , Receptores Virais/química , Receptores Virais/metabolismo , Estomatite Vesicular/metabolismo , Vírus da Estomatite Vesicular Indiana/metabolismo , Proteínas do Envelope Viral/metabolismo , Humanos , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/genética , Família Multigênica , Ligação Proteica , Domínios Proteicos , Receptores de LDL/genética , Receptores Virais/genética , Estomatite Vesicular/genética , Estomatite Vesicular/virologia , Vírus da Estomatite Vesicular Indiana/química , Vírus da Estomatite Vesicular Indiana/genética , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/genética
7.
Nat Commun ; 6: 5686, 2015 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-25597503

RESUMO

Friedreich's ataxia is a severe neurodegenerative disease caused by the decreased expression of frataxin, a mitochondrial protein that stimulates iron-sulfur (Fe-S) cluster biogenesis. In mammals, the primary steps of Fe-S cluster assembly are performed by the NFS1-ISD11-ISCU complex via the formation of a persulfide intermediate on NFS1. Here we show that frataxin modulates the reactivity of NFS1 persulfide with thiols. We use maleimide-peptide compounds along with mass spectrometry to probe cysteine-persulfide in NFS1 and ISCU. Our data reveal that in the presence of ISCU, frataxin enhances the rate of two similar reactions on NFS1 persulfide: sulfur transfer to ISCU leading to the accumulation of a persulfide on the cysteine C104 of ISCU, and sulfur transfer to small thiols such as DTT, L-cysteine and GSH leading to persulfuration of these thiols and ultimately sulfide release. These data raise important questions on the physiological mechanism of Fe-S cluster assembly and point to a unique function of frataxin as an enhancer of sulfur transfer within the NFS1-ISD11-ISCU complex.


Assuntos
Liases de Carbono-Enxofre/metabolismo , Proteínas de Ligação ao Ferro/metabolismo , Compostos de Sulfidrila/metabolismo , Liases de Carbono-Enxofre/química , Cromatografia em Gel , Cromatografia Líquida de Alta Pressão , Cisteína/química , Cisteína/metabolismo , Glutationa/química , Glutationa/metabolismo , Humanos , Proteínas de Ligação ao Ferro/química , Espectrometria de Massas , Software , Compostos de Sulfidrila/química , Sulfetos/química , Sulfetos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...